3.49 \(\int \frac{\cos ^2(e+f x)}{\sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=42 \[ \frac{\cos (e+f x)}{c f \sqrt{a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}} \]

[Out]

Cos[e + f*x]/(c*f*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.321385, antiderivative size = 42, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.053, Rules used = {2841, 2738} \[ \frac{\cos (e+f x)}{c f \sqrt{a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^2/(Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(5/2)),x]

[Out]

Cos[e + f*x]/(c*f*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2))

Rule 2841

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rule 2738

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x)}{\sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}} \, dx &=\frac{\int \frac{\sqrt{a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{3/2}} \, dx}{a c}\\ &=\frac{\cos (e+f x)}{c f \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.499594, size = 79, normalized size = 1.88 \[ \frac{\left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^3 \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )}{f \sqrt{a (\sin (e+f x)+1)} (c-c \sin (e+f x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[e + f*x]^2/(Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(5/2)),x]

[Out]

((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2]))/(f*Sqrt[a*(1 + Sin[e + f*x])]*
(c - c*Sin[e + f*x])^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.21, size = 51, normalized size = 1.2 \begin{align*} -{\frac{ \left ( -1+\sin \left ( fx+e \right ) \right ) \cos \left ( fx+e \right ) \sin \left ( fx+e \right ) }{f}{\frac{1}{\sqrt{a \left ( 1+\sin \left ( fx+e \right ) \right ) }}} \left ( -c \left ( -1+\sin \left ( fx+e \right ) \right ) \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2/(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x)

[Out]

-1/f*(-1+sin(f*x+e))*cos(f*x+e)*sin(f*x+e)/(a*(1+sin(f*x+e)))^(1/2)/(-c*(-1+sin(f*x+e)))^(5/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (f x + e\right )^{2}}{\sqrt{a \sin \left (f x + e\right ) + a}{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)^2/(sqrt(a*sin(f*x + e) + a)*(-c*sin(f*x + e) + c)^(5/2)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.68165, size = 151, normalized size = 3.6 \begin{align*} -\frac{\sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{a c^{3} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) - a c^{3} f \cos \left (f x + e\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

-sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(a*c^3*f*cos(f*x + e)*sin(f*x + e) - a*c^3*f*cos(f*x + e))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2/(c-c*sin(f*x+e))**(5/2)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (f x + e\right )^{2}}{\sqrt{a \sin \left (f x + e\right ) + a}{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(f*x + e)^2/(sqrt(a*sin(f*x + e) + a)*(-c*sin(f*x + e) + c)^(5/2)), x)